If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying (x2 + x + 1)(3x3 + 9x2) = 0 Reorder the terms: (1 + x + x2)(3x3 + 9x2) = 0 Reorder the terms: (1 + x + x2)(9x2 + 3x3) = 0 Multiply (1 + x + x2) * (9x2 + 3x3) (1(9x2 + 3x3) + x(9x2 + 3x3) + x2(9x2 + 3x3)) = 0 ((9x2 * 1 + 3x3 * 1) + x(9x2 + 3x3) + x2(9x2 + 3x3)) = 0 ((9x2 + 3x3) + x(9x2 + 3x3) + x2(9x2 + 3x3)) = 0 (9x2 + 3x3 + (9x2 * x + 3x3 * x) + x2(9x2 + 3x3)) = 0 (9x2 + 3x3 + (9x3 + 3x4) + x2(9x2 + 3x3)) = 0 (9x2 + 3x3 + 9x3 + 3x4 + (9x2 * x2 + 3x3 * x2)) = 0 (9x2 + 3x3 + 9x3 + 3x4 + (9x4 + 3x5)) = 0 Combine like terms: 3x3 + 9x3 = 12x3 (9x2 + 12x3 + 3x4 + 9x4 + 3x5) = 0 Combine like terms: 3x4 + 9x4 = 12x4 (9x2 + 12x3 + 12x4 + 3x5) = 0 Solving 9x2 + 12x3 + 12x4 + 3x5 = 0 Solving for variable 'x'. Factor out the Greatest Common Factor (GCF), '3x2'. 3x2(3 + 4x + 4x2 + x3) = 0 Ignore the factor 3.Subproblem 1
Set the factor 'x2' equal to zero and attempt to solve: Simplifying x2 = 0 Solving x2 = 0 Move all terms containing x to the left, all other terms to the right. Simplifying x2 = 0 Take the square root of each side: x = {0}Subproblem 2
Set the factor '(3 + 4x + 4x2 + x3)' equal to zero and attempt to solve: Simplifying 3 + 4x + 4x2 + x3 = 0 Solving 3 + 4x + 4x2 + x3 = 0 The solution to this equation could not be determined. This subproblem is being ignored because a solution could not be determined.Solution
x = {0}
| 4(2+6x)= | | 12m+6n-5m+7n= | | -14x+21y+7= | | 18+t=32 | | (2x^2-23x+63)/(x-7) | | 5*35+5*7= | | 16t=15(t+2) | | 6x+16=3x+100 | | (x+2)2=1 | | 20(8.7)=1(x) | | 5*-7+5*7= | | 69-7x=29x+21 | | 20(8.7)=x(1) | | 5(8+7)= | | 2x+(5x+7xy)-3y+(25xy-4x)=275 | | 5*x+5*7= | | 11x+5=7x+49 | | h(-3)=34 | | a/4=(a-2)/3 | | 8+4t=3t+18 | | a/4=a-2/3 | | 10r-30=3r-9 | | 3(x-6)=9y+18 | | 3+5=54-4x | | 63*8= | | 18-8=10 | | 6x+6x=12 | | k(6+s)= | | s(6+k)= | | 6(k+s)= | | k*6+k*s= | | 18+6d=10d+2 |